

Date Planned : / /	Daily Tutorial Sheet-10	Expected Duration : 90 Min
Actual Date of Attempt : / /	Level-2	Exact Duration :

116.	How many litres of water must be added to 1 litre of an aqueous solution of $\mathrm{NH_4Cl}$ and $\mathrm{NH_3}$	having pH
	4.70 to create an aqueous solution having pH 5.70?	

(A) 2.0 L

(B) 9.0 L

(C) 10 L

(D) None of these

117. pH value of which one of the following is not equal to one?

(A) 0.1 M HNO₃

(B) 0.05 M H₂SO₄

(C) 0.1 M CH₃COOH

(D) $50 \text{ cm}^3 \text{ of } 0.4 \text{ M HCl} + 50 \text{ cm}^3 \text{ of } 0.2 \text{ M NaOH}$

118. $30 \text{ cc} \text{ of } \frac{\text{M}}{3} \text{ HCl, } 20 \text{ cc} \text{ of } \frac{\text{M}}{2} \text{HNO}_3 \text{ and } 40 \text{ cc} \text{ of } \frac{\text{M}}{4} \text{NaOH} \text{ solutions are mixed and the volume was made}$

upto 1 dm3. The pH of the resulting solution is:

(A) 8

(B) 2

(C) 1

(D) 3

119. Which of the following solutions will have pH = 9 at 298 K?

(A) 1×10^{-9} M HCl solution

(B) 1×10^{-5} M NaOH solution

(C) 1×10^{-9} M KOH solution

(D) Both (A) and (B)

120. Which statement is false ? (Assume complete dissociation in each case)

(A) If 2.0 L of a solution of H₂SO₄ contains 0.1 mole, then pH of the solution is 1

(B) The concentration of OH⁻ ions in 0.005 M HNO₃ is 2.0×10^{-12} mol / L

(C) The pH of 0.01 M KOH is 12

(D) In a 0.001 M solution of NaOH the concentration of H^+ ions is 10^{-3} mol/L

121. A mixture of sodium oxide and calcium oxide are dissolved in water and saturated with excess carbon dioxide gas. The resulting solution is It contains:

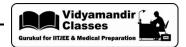
(A) basic; NaOH and Ca(OH)₂

(B) neutral; Na₂CO₃ and CaCO₃

(C) basic; Na₂CO₃ and CaCO₃

(D) acidic; NaOH and CaCO₃

122. Which of the following expressions is not true?


(

(A) $[H^+] = [OH^-] = \sqrt{K_w}$ for a neutral solution

(B) $[H^+] > \sqrt{K_W}$ and $[OH^-] < \sqrt{K_W}$ for an acidic solution

(C) $[H^+] < \sqrt{K_W} \ \ \text{and} \ [OH^-] > \sqrt{K_W} \ \ \text{for an alkaline solution}$

(D) $[H^+] = [OH^-] = 10^{-7} M$ for a neutral solution at all temperatures

- 123. 20 mL of 0.1 M weak acid $HA(K_a = 10^{-5})$ is mixed with solution of 10 mL of 0.3 M HCl and 10 mL of 0.1 M NaOH. Find the value of $[A^-]/([HA] + [A^-])$ in the resulting solution:
 - (A) 2×10^{-4} (B) 2×10^{-5} (C) 2×10^{-3} (D) 0.05
- 124. A weak monobasic acid is half neutralised by a strong base. If the pH of the solution is 5.4, its pK_a is:
- **(A)** 6.8 **(B)** 2.7 **(C)** 5.4 **(D)** 10.8
- **125.** The pH values of 0.1 M solution of HCl, CH₃COOH, NH₄Cl and CH₃COONa will have the order :
 - (A) HCl < CH₃COOH < NH₄Cl < CH₃COONa
 - (B) CH₃COONa < NH₄Cl < CH₃COOH < HCl
 - (C) NH₄Cl < CH₃COONa < CH₃COOH < HCl
 - **(D)** All will have same of pH value

VMC | Ionic Equilibrium 127 DTS-10 | Level-2